Multiobjective reconfiguration of unbalanced distribution networks utilizing improved transient search optimization algorithm contemplating energy high quality and reliability metrics
[ad_1]
Sultana, B., Mustafa, M. W., Sultana, U. & Bhatti, A. R. Assessment on reliability enchancment and energy loss discount in distribution system by way of community reconfiguration. Renew. Maintain. Power Rev. 66, 297–310 (2016).
Nowdeh, S. A. et al. Fuzzy multi-objective placement of renewable vitality sources in distribution system with goal of loss discount and reliability enchancment utilizing a novel hybrid methodology. Appl. Smooth Comput. 77, 761–779 (2019).
Moghaddam, M. J. H. et al. A brand new mannequin for reconfiguration and distributed era allocation in distribution community contemplating energy high quality indices and community losses. IEEE Syst. J. 14, 3530–3538 (2020).
Raposo, A. A. M., Rodrigues, A. B. & da Silva, M. D. G. Sturdy meter placement for state estimation contemplating distribution community reconfiguration for annual vitality loss discount. Electr. Energy Syst. Res. 182, 106233 (2020).
Izci, D., Ekinci, S., Zeynelgil, H. L. & Hedley, J. Fractional order PID design primarily based on Novel improved slime Mould algorithm. Electr. Energy Parts Syst. 49(9–10), 901–918 (2021).
Ekinci, S. et al. Logarithmic spiral search primarily based arithmetic optimization algorithm with selective mechanism and its software to practical electrical stimulation system management. Smooth Comput. 1–13 (2022).
Izci, D., Ekinci, S., Eker, E. & Kayri, M. Augmented starvation video games search algorithm utilizing logarithmic spiral opposition-based studying for perform optimization and controller design. J. King Saud Univ.-Eng. Sci. (2022).
Izci, D., Hekimoğlu, B. & Ekinci, S. A brand new synthetic ecosystem-based optimization built-in with Nelder-Mead methodology for PID controller design of buck converter. Alex. Eng. J. 61(3), 2030–2044 (2022).
Ekinci, S., Izci, D. & Kayri, M. An efficient controller design method for magnetic levitation system utilizing novel improved manta ray foraging optimization. Arab. J. Sci. Eng. 1–22 (2021).
Mahela, O. P., Khan, B., Alhelou, H. H. & Siano, P. Energy high quality evaluation and occasion detection in distribution community with wind vitality penetration utilizing stockwell rework and fuzzy clustering. IEEE Trans. Ind. Inform. 16, 6922–6932 (2020).
Murty, V. V. V. S. N. & Kumar, A. Optimum DG integration and community reconfiguration in microgrid system with lifelike time various load mannequin utilizing hybrid optimisation. IET Sensible Grid 2, 192–202 (2019).
Badran, O., Mekhilef, S., Mokhlis, H. & Dahalan, W. Optimum reconfiguration of distribution system linked with distributed generations: A assessment of various methodologies. Renew. Maintain. Power Rev. 73, 854–867 (2017).
Quintero Duran, M. J., Candelo Becerra, J. E. & Sousa Santos, V. Current traits of essentially the most used metaheuristic strategies for distribution community reconfiguration (2017).
Abdelaziz, A. Y., Osama, R. A. & El-Khodary, S. M. Reconfiguration of distribution methods for loss discount utilizing the hyper-cube ant colony optimisation algorithm. IET Gen. Transm. Distrib. 6, 176–187 (2012).
Wu, W.-C. & Tsai, M.-S. Utility of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration. IEEE Trans. Energy Syst. 26, 1591–1599 (2011).
Nguyen, T. T. & Truong, A. V. Distribution community reconfiguration for energy loss minimization and voltage profile enchancment utilizing cuckoo search algorithm. Int. J. Electr. Energy Power Syst. 68, 233–242 (2015).
Flaih, F. M. F., Xiangning, L., Dawoud, S. M. & Mohammed, M. A. Distribution system reconfiguration for energy loss minimization and voltage profile enchancment utilizing Modified particle swarm optimization. In 2016 IEEE PES Asia-Pacific Energy and Power Engineering Convention (APPEEC) 120–124 (IEEE, 2016).
Das, D. A fuzzy multiobjective method for community reconfiguration of distribution methods. IEEE Trans. Energy Deliv. 21, 202–209 (2005).
Abul’Wafa, A. R. A brand new heuristic method for optimum reconfiguration in distribution methods. Electr. Energy Syst. Res. 81, 282–289 (2011).
Su, C.-T., Chang, C.-F. & Chiou, J.-P. Distribution community reconfiguration for loss discount by ant colony search algorithm. Electr. Energy Syst. Res. 75, 190–199 (2005).
Abdelaziz, A. Y., Mohamed, F. M., Mekhamer, S. F. & Badr, M. A. L. Distribution system reconfiguration utilizing a modified Tabu Search algorithm. Electr. Energy Syst. Res. 80, 943–953 (2010).
Kumar, Ok. S. & Jayabarathi, T. Energy system reconfiguration and loss minimization for an distribution methods utilizing bacterial foraging optimization algorithm. Int. J. Electr. Energy Power Syst. 36, 13–17 (2012).
Lotfipour, A. & Afrakhte, H. A discrete Educating–Studying-Based mostly Optimization algorithm to unravel distribution system reconfiguration in presence of distributed era. Int. J. Electr. Energy Power Syst. 82, 264–273 (2016).
Jafari, A., Ganjehlou, H. G., Darbandi, F. B., Mohammadi-Ivatloo, B. & Abapour, M. Dynamic and multi-objective reconfiguration of distribution community utilizing a novel hybrid algorithm with parallel processing functionality. Appl. Smooth Comput. 90, 106146 (2020).
Abdelaziz, A. Y., Mohammed, F. M., Mekhamer, S. F. & Badr, M. A. L. Distribution methods reconfiguration utilizing a modified particle swarm optimization algorithm. Electr. Energy Syst. Res. 79, 1521–1530 (2009).
Jakus, D., Čađenović, R., Vasilj, J. & Sarajčev, P. Optimum reconfiguration of distribution networks utilizing hybrid heuristic-genetic algorithm. Energies 13, 1544 (2020).
Gupta, N., Swarnkar, A. & Niazi, Ok. R. Distribution community reconfiguration for energy high quality and reliability enchancment utilizing Genetic Algorithms. Int. J. Electr. Energy Power Syst. 54, 664–671 (2014).
Kavousi-Fard, A. & Niknam, T. Multi-objective stochastic distribution feeder reconfiguration from the reliability standpoint. Power 64, 342–354 (2014).
Rajaram, R., Kumar, Ok. S. & Rajasekar, N. Energy system reconfiguration in a radial distribution community for decreasing losses and to enhance voltage profile utilizing modified plant progress simulation algorithm with Distributed Technology (DG). Power Rep. 1, 116–122 (2015).
Jazebi, S. & Vahidi, B. Reconfiguration of distribution networks to mitigate utilities energy high quality disturbances. Electr. Energy Syst. Res. 91, 9–17 (2012).
Ch, Y., Goswami, S. Ok. & Chatterjee, D. Impact of community reconfiguration on energy high quality of distribution system. Int. J. Electr. Energy Power Syst. 83, 87–95 (2016).
Hadidian-Moghaddam, M. J., Arabi-Nowdeh, S., Bigdeli, M. & Azizian, D. A multi-objective optimum sizing and siting of distributed era utilizing ant lion optimization method. Ain Shams Eng. J. 9, 2101–2109 (2018).
Wu, M., Li, Ok., Kwong, S. & Zhang, Q. Evolutionary multiobjective optimization primarily based on adversarial decomposition. IEEE Trans. Cybern. 50, 753–764 (2018).
Qais, M. H., Hasanien, H. M. & Alghuwainem, S. Transient search optimization: A brand new meta-heuristic optimization algorithm. Appl. Intell. 50, 3926–3941 (2020).
Kennedy, J. Naked bones particle swarms. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706) 80–87 (IEEE, 2003).
Mirjalili, S., Mirjalili, S. M. & Lewis, A. Gray wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014).
Zhao, W., Zhang, Z. & Wang, L. Manta ray foraging optimization: An efficient bio-inspired optimizer for engineering purposes. Eng. Appl. Artif. Intell. 87, 103300 (2020).
Yang, X. & Gandomi, A. H. Bat algorithm: A novel method for international engineering optimization. Eng. Comput. 29(5), 464–483 (2012).
Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015).
Ewees, A. A., Abd Elaziz, M. & Houssein, E. H. Improved grasshopper optimization algorithm utilizing opposition-based studying. Knowledgeable Syst. Appl. 112, 156–172 (2018).
Jahannoush, M. & Nowdeh, S. A. Optimum designing and administration of a stand-alone hybrid vitality system utilizing meta-heuristic improved sine–cosine algorithm for Leisure Heart, case research for Iran nation. Appl. Smooth Comput. 96, 106611 (2020).
Gupta, S. & Deep, Ok. A hybrid self-adaptive sine cosine algorithm with opposition primarily based studying. Knowledgeable Syst. Appl. 119, 210–230 (2019).
Carrasco, J., García, S., Rueda, M. M., Das, S. & Herrera, F. Current traits in the usage of statistical checks for evaluating swarm and evolutionary computing algorithms: Sensible pointers and a vital assessment. Swarm Evol. Comput. 54, 100665 (2020).
Derrac, J., García, S., Hui, S., Suganthan, P. N. & Herrera, F. Analyzing convergence efficiency of evolutionary algorithms: A statistical method. Inf. Sci. 289, 41–58 (2014).
Kasaei, M. J. & Nikoukar, J. DG allocation with consideration of prices and losses in distribution networks utilizing ant colony algorithm. Majlesi J. Electr. Eng. 10, (2016).
Karimianfard, H. & Haghighat, H. An initial-point technique for optimizing distribution system reconfiguration. Electr. Energy Syst. Res. 176, 105943 (2019).
Zhang, D., Fu, Z. & Zhang, L. An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution methods. Electr. energy Syst. Res. 77, 685–694 (2007).
Zhu, J. Z. Optimum reconfiguration {of electrical} distribution community utilizing the refined genetic algorithm. Electr. Energy Syst. Res. 62, 37–42 (2002).
[ad_2]
Source_link