Genetic algorithm optimization of broadband operation in a noise-like pulse fiber laser
[ad_1]
Agrawal, G. P. Nonlinear Fiber Optics sixth edn. (Educational Press, 2019).
Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons (Springer, 2005).
Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).
Turitsyn, S. Ok. et al. Dissipative solitons in fiber lasers. Physics Uspekhi 59, 642–668 (2016).
Ryczkowski, P. et al. Actual-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics 12, 221–227 (2018).
Peng, J. et al. Actual-time remark of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys. 1, 20 (2018).
Liu, X. & Cui, Y. Revealing the habits of soliton buildup in a mode-locked laser. Adv. Photonics 1, 016003 (2019).
Woodward, R. I. Dispersion engineering of mode-locked fibre lasers. J. Choose. 20, 033002 (2018).
Fu, W., Wright, L. G., Sidorenko, P., Backus, S. & Smart, F. W. A number of new instructions for ultrafast fiber lasers [Invited]. Choose. Specific 26, 9432–9463 (2018).
Krupa, Ok., Nithyanandan, Ok., Andral, U., Tchofo-Dinda, P. & Grelu, P. Actual-time remark of inside movement inside ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017).
Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Actual-time spectral interferometry probes the interior dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).
Liu, X., Yao, X. & Cui, Y. Actual-time remark of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018).
Huang, Y.-Q., Qi, Y.-L., Luo, Z.-C., Luo, A.-P. & Xu, W.-C. Versatile patterns of a number of rectangular noise-like pulses in a fiber laser. Choose. Specific 24, 7356–7363 (2016).
Klein, A. et al. Ultrafast rogue wave patterns in fiber lasers. Optica 5, 774–778 (2018).
Zhou, R., Liu, X., Yu, D., Li, Q. & Fu, H. Y. Versatile multi-soliton patterns of noise-like pulses in a passively mode-locked fiber laser. Choose. Specific 28, 912–923 (2020).
Runge, A. F. J., Aguergaray, C., Broderick, N. G. R. & Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Choose. Lett. 38, 4327–4330 (2013).
Churkin, D. V. et al. Stochasticity, periodicity and localized gentle constructions in partially mode-locked fibre lasers. Nat. Commun. 6, 7004 (2015).
Lapre, C. et al. Actual-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics. Sci. Rep. 9, 13950 (2019).
Horowitz, M., Barad, Y. & Silberberg, Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Choose. Lett. 22, 799–801 (1997).
North, T. & Rochette, M. Raman-induced noiselike pulses in a extremely nonlinear and dispersive all-fiber ring laser. Choose. Lett. 38, 890–892 (2013).
Lecaplain, C. & Grelu, P. Rogue waves amongst noiselike-pulse laser emission: An experimental investigation. Phys. Rev. A 90, 013805 (2014).
Jeong, Y., Vazquez-Zuniga, L. A., Lee, S. & Kwon, Y. On the formation of noise-like pulses in fiber ring cavity configurations. Choose. Fiber Technol. 20, 575–592 (2014).
Li, B. et al. Unveiling femtosecond rogue-wave constructions in noise-like pulses by a secure and synchronized time magnifier. Choose. Lett. 44, 4351–4354 (2019).
Santiago-Hernandez, H. et al. Technology and characterization of Erbium–Raman noise-like pulses from a figure-eight fibre laser. Laser Phys. 25, 045106 (2015).
Wang, X. et al. Technology of noise-like pulses with 203 nm 3-db bandwidth. Choose. Specific 27, 24147–24153 (2019).
Wang, Z., Nithyanandan, Ok., Coillet, A., Tchofo-Dinda, P. & Grelu, P. Buildup of incoherent dissipative solitons in ultrafast fiber lasers. Phys. Rev. Res. 2, 013101 (2020).
Du, Y. et al. Alternation of the mode synchronization and desynchronization in ultrafast fiber laser. Laser Photonics Rev. 14, 1900219 (2020).
Keren, S. & Horowitz, M. Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses. Choose. Lett. 26, 328–330 (2001).
Özgören, Ok., Öktem, B., Yilmaz, S., Ömer Ilday, F. & Eken, Ok. 83 W, 31 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining. Choose. Specific 19, 17647–17652 (2011).
Meng, F. et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun. 12, 5567 (2021).
Hofer, M., Fermann, M. E., Haberl, F., Ober, M. H. & Schmidt, A. J. Mode locking with cross-phase and self-phase modulation. Choose. Lett. 16, 502–504 (1991).
Chong, A., Wright, L. G. & Smart, F. W. Ultrafast fiber lasers primarily based on self-similar pulse evolution: A assessment of present progress. Rep. Prog. Phys. 78, 113901 (2015).
Sanchez, F., Leblond, H., Salhi, M., Komarov, A. & Haboucha, A. Fashions for passively mode-locked fiber lasers. Fiber Integr. Choose. 27, 370–391 (2008).
Zingg, D. W., Nemec, M. & Pulliam, T. H. A comparative analysis of genetic and gradient-based algorithms utilized to aerodynamic optimization. Eur. J. Comput. Mech. 17, 103–126 (2008).
Andral, U. et al. Towards an autosetting mode-locked fiber laser cavity. J. Choose. Soc. Am. B 33, 825–833 (2016).
Pu, G., Yi, L., Zhang, L. & Hu, W. Genetic algorithm-based quick real-time automated mode-locked fiber laser. IEEE Photonics Technol. Lett. 32, 7–10 (2020).
Mitchell, M. An Introduction to Genetic Algorithms (MIT Press, 1998).
Simon, D. Evolutionary Optimization Algorithms (Wiley, 2013).
Girardot, J., Billard, F., Coillet, A., Hertz, E. & Grelu, P. Autosetting mode-locked laser utilizing an evolutionary algorithm and time-stretch spectral characterization. IEEE J. Sel. Prime. Quantum Electron. 26, 1100108 (2020).
[ad_2]
Source_link