CRISPR–dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization
[ad_1]
Meng, F. & Ellis, T. The second decade of artificial biology: 2010–2020. Nat. Commun. 11, 5174 (2020).
Voigt, C. A. Artificial biology 2020–2030: six commercially-available merchandise which can be altering our world. Nat. Commun. 11, 6379 (2020).
Naseri, G. & Koffas, M. A. G. Software of combinatorial optimization methods in artificial biology. Nat. Commun. 11, 2446 (2020).
Brooks, S. M. & Alper, H. S. Purposes, challenges, and desires for using artificial biology past the lab. Nat. Commun. 12, 1390 (2021).
Xu, P. Manufacturing of chemical compounds utilizing dynamic management of metabolic fluxes. Curr. Opin. Biotechnol. 53, 12–19 (2018).
Keasling, J. et al. Microbial manufacturing of superior biofuels. Nat. Rev. Microbiol. 19, 701–715 (2021).
Lee, S. Y. et al. A complete metabolic map for manufacturing of bio-based chemical compounds. Nat. Catal. 2, 18–33 (2019).
Nielsen, J. & Keasling, J. D. Engineering mobile metabolism. Cell 164, 1185–1197 (2016).
Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic biosensor design for pure product biosynthesis in microorganisms. Developments Biotechnol. 38, 797–810 (2020).
Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the manufacturing of superior biofuels. Nature 488, 320–328 (2012).
You, J. et al. Microbial manufacturing of riboflavin: biotechnological advances and views. Metab. Eng. 68, 46–58 (2021).
Luo, X. et al. Full biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).
Leyn, S. A. et al. Genomic reconstruction of the transcriptional regulatory community in Bacillus subtilis. J. Bacteriol. 195, 2463–2473 (2013).
Kalamorz, F., Reichenbach, B., März, W., Rak, B. & Görke, B. Suggestions management of glucosamine-6-phosphate synthase GlmS expression will depend on the small RNA GlmZ and includes the novel protein YhbJ in Escherichia coli. Mol. Microbiol. 65, 1518–1533 (2007).
Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Management of gene expression by a pure metabolite-responsive ribozyme. Nature 428, 281–286 (2004).
Park, S. A. et al. Bacillus subtilis as a sturdy host for biochemical manufacturing using biomass. Crit. Rev. Biotechnol. 41, 827–848 (2021).
Wu, Y. et al. Design of a programmable biosensor–CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 48, 996–1009 (2020).
Chen, J. Okay., Shen, C. R. & Liu, C. L. N-Acetylglucosamine: manufacturing and functions. Mar. Medicine 8, 2493–2516 (2010).
Carrillo, N. et al. Security and efficacy of N-acetylmannosamine (ManNAc) in sufferers with GNE myopathy: an open-label section 2 research. Genet. Med. 23, 2067–2075 (2021).
Teng, Y. et al. Biosensor-enabled pathway optimization in metabolic engineering. Curr. Opin. Biotechnol. 75, 102696 (2022).
Tian, R. et al. Artificial N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metab. Eng. 55, 131–141 (2019).
Tan, S. -I. & Ng, I. -S. New perception into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synth. Biol. 9, 613–622 (2020).
Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation charge is managed by coupled trade-offs between web site accessibility, selective RNA unfolding and sliding at upstream standby websites. Nucleic Acids Res. 42, 2646–2659 (2014).
Liu, Y. et al. A dynamic pathway evaluation strategy reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nat. Commun. 7, 11933 (2016).
Klein, D. J. Structural foundation of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).
Blencke, H. -M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5, 133–149 (2003).
Yang, S., Du, G., Chen, J. & Kang, Z. Characterization and software of endogenous phase-dependent promoters in Bacillus subtilis. Appl. Microbiol. Biotechnol. 101, 4151–4161 (2017).
Wu, Y. et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes enhancing and regulation system for Bacillus subtilis. Biotechnol. Bioeng. 117, 1817–1825 (2020).
Lee, S. W. & Oh, M. Okay. An artificial suicide riboswitch for the high-throughput screening of metabolite manufacturing in Saccharomyces cerevisiae. Metab. Eng. 28, 143–150 (2015).
Na, D. et al. Metabolic engineering of Escherichia coli utilizing artificial small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).
McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR applied sciences for gene enhancing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific management of gene expression. Cell 152, 1173–1183 (2013).
Li, H. et al. Combinatorial CRISPR interference library for enhancing 2,3-BDO manufacturing and elucidating key genes in cyanobacteria. Entrance. Bioeng. Biotechnol. 10, 913820 (2022).
Shaw, W. M. et al. Inducible expression of huge gRNA arrays for multiplexed CRISPRai functions. Nat. Commun. 13, 4984 (2022).
Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific management of gene expression. Nat. Protoc. 8, 2180–2196 (2013).
Magnusson, J. P., Rios, A. R., Wu, L. & Qi, L. S. Enhanced Cas12a multi-gene regulation utilizing a CRISPR array separator. eLife 10, e66406 (2021).
Liao, C. et al. Modular one-pot meeting of CRISPR arrays allows library technology and divulges elements influencing crRNA biogenesis. Nat. Commun. 10, 2948 (2019).
Qin, L., Liu, X., Xu, Okay. & Li, C. Mining and design of biosensors for engineering microbial cell manufacturing facility. Curr. Opin. Biotechnol. 75, 102694 (2022).
Lu, Z. et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 47, e40 (2019).
Schilling, C., Koffas, M. A. G., Sieber, V. & Schmid, J. Novel prokaryotic CRISPR–Cas12a-based instrument for programmable transcriptional activation and repression. ACS Synth. Biol. 9, 3353–3363 (2020).
Liu, Y., Wan, X. & Wang, B. Engineered CRISPRa allows programmable eukaryote-like gene activation in micro organism. Nat. Commun. 10, 3693 (2019).
Dong, C., Fontana, J., Patel, A., Carothers, J. M. & Zalatan, J. G. Artificial CRISPR–Cas gene activators for transcriptional reprogramming in micro organism. Nat. Commun. 9, 2489 (2018).
Ho, H.-I., Fang, J. R., Cheung, J. & Wang, H. H. Programmable CRISPR–Cas transcriptional activation in micro organism. Mol. Syst. Biol. 16, e9427 (2020).
Zalatan, J. G. et al. Engineering advanced artificial transcriptional packages with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).
Deaner, M., Mejia, J. & Alper, H. S. Enabling graded and large-scale multiplex of desired genes utilizing a dual-mode dCas9 activator in Saccharomyces cerevisiae. ACS Synth. Biol. 6, 1931–1943 (2017).
Gaugué, I., Oberto, J. & Plumbridge, J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR household regulators, NagR and GamR. Mol. Microbiol. 92, 100–115 (2014).
Bowman, E. Okay. & Alper, H. S. Microdroplet-assisted screening of biomolecule manufacturing for metabolic engineering functions. Developments Biotechnol. 38, 701–714 (2020).
Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).
Rahmer, R., Heravi, Okay. M. & Altenbuchner, J. Building of a super-competent Bacillus subtilis 168 utilizing the PmtlA–comKS inducible cassette. Entrance. Microbiol. 6, 1431 (2015).
Niu, T. et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme change allows dynamic management of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine. ACS Synth. Biol. 7, 2423–2435 (2018).
Liu, H. & Naismith, J. H. An environment friendly one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008).
Altenbuchner, J. Enhancing of the Bacillus subtilis genome by the CRISPR–Cas9 system. Appl. Environ. Microbiol. 82, 5421–5427 (2016).
Sato, Okay., Akiyama, M. & Sakakibara, Y. RNA secondary construction prediction utilizing deep studying with thermodynamic integration. Nat. Commun. 12, 941 (2021).
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 extremely optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).
[ad_2]
Source_link