CRISPR–dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization

[ad_1]

  • Meng, F. & Ellis, T. The second decade of artificial biology: 2010–2020. Nat. Commun. 11, 5174 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Voigt, C. A. Artificial biology 2020–2030: six commercially-available merchandise which can be altering our world. Nat. Commun. 11, 6379 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Naseri, G. & Koffas, M. A. G. Software of combinatorial optimization methods in artificial biology. Nat. Commun. 11, 2446 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brooks, S. M. & Alper, H. S. Purposes, challenges, and desires for using artificial biology past the lab. Nat. Commun. 12, 1390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, P. Manufacturing of chemical compounds utilizing dynamic management of metabolic fluxes. Curr. Opin. Biotechnol. 53, 12–19 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Keasling, J. et al. Microbial manufacturing of superior biofuels. Nat. Rev. Microbiol. 19, 701–715 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. A complete metabolic map for manufacturing of bio-based chemical compounds. Nat. Catal. 2, 18–33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, J. & Keasling, J. D. Engineering mobile metabolism. Cell 164, 1185–1197 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic biosensor design for pure product biosynthesis in microorganisms. Developments Biotechnol. 38, 797–810 (2020).

  • Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the manufacturing of superior biofuels. Nature 488, 320–328 (2012).

    Article 
    CAS 

    Google Scholar
     

  • You, J. et al. Microbial manufacturing of riboflavin: biotechnological advances and views. Metab. Eng. 68, 46–58 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, X. et al. Full biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leyn, S. A. et al. Genomic reconstruction of the transcriptional regulatory community in Bacillus subtilis. J. Bacteriol. 195, 2463–2473 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kalamorz, F., Reichenbach, B., März, W., Rak, B. & Görke, B. Suggestions management of glucosamine-6-phosphate synthase GlmS expression will depend on the small RNA GlmZ and includes the novel protein YhbJ in Escherichia coli. Mol. Microbiol. 65, 1518–1533 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Management of gene expression by a pure metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. A. et al. Bacillus subtilis as a sturdy host for biochemical manufacturing using biomass. Crit. Rev. Biotechnol. 41, 827–848 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Design of a programmable biosensor–CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 48, 996–1009 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. Okay., Shen, C. R. & Liu, C. L. N-Acetylglucosamine: manufacturing and functions. Mar. Medicine 8, 2493–2516 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Carrillo, N. et al. Security and efficacy of N-acetylmannosamine (ManNAc) in sufferers with GNE myopathy: an open-label section 2 research. Genet. Med. 23, 2067–2075 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Y. et al. Biosensor-enabled pathway optimization in metabolic engineering. Curr. Opin. Biotechnol. 75, 102696 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tian, R. et al. Artificial N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metab. Eng. 55, 131–141 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tan, S. -I. & Ng, I. -S. New perception into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synth. Biol. 9, 613–622 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation charge is managed by coupled trade-offs between web site accessibility, selective RNA unfolding and sliding at upstream standby websites. Nucleic Acids Res. 42, 2646–2659 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. A dynamic pathway evaluation strategy reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nat. Commun. 7, 11933 (2016).

    Article 

    Google Scholar
     

  • Klein, D. J. Structural foundation of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Blencke, H. -M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5, 133–149 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Du, G., Chen, J. & Kang, Z. Characterization and software of endogenous phase-dependent promoters in Bacillus subtilis. Appl. Microbiol. Biotechnol. 101, 4151–4161 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes enhancing and regulation system for Bacillus subtilis. Biotechnol. Bioeng. 117, 1817–1825 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. W. & Oh, M. Okay. An artificial suicide riboswitch for the high-throughput screening of metabolite manufacturing in Saccharomyces cerevisiae. Metab. Eng. 28, 143–150 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Na, D. et al. Metabolic engineering of Escherichia coli utilizing artificial small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

    Article 
    CAS 

    Google Scholar
     

  • McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR applied sciences for gene enhancing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific management of gene expression. Cell 152, 1173–1183 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Combinatorial CRISPR interference library for enhancing 2,3-BDO manufacturing and elucidating key genes in cyanobacteria. Entrance. Bioeng. Biotechnol. 10, 913820 (2022).

    Article 

    Google Scholar
     

  • Shaw, W. M. et al. Inducible expression of huge gRNA arrays for multiplexed CRISPRai functions. Nat. Commun. 13, 4984 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific management of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Magnusson, J. P., Rios, A. R., Wu, L. & Qi, L. S. Enhanced Cas12a multi-gene regulation utilizing a CRISPR array separator. eLife 10, e66406 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liao, C. et al. Modular one-pot meeting of CRISPR arrays allows library technology and divulges elements influencing crRNA biogenesis. Nat. Commun. 10, 2948 (2019).

    Article 

    Google Scholar
     

  • Qin, L., Liu, X., Xu, Okay. & Li, C. Mining and design of biosensors for engineering microbial cell manufacturing facility. Curr. Opin. Biotechnol. 75, 102694 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 47, e40 (2019).

    Article 

    Google Scholar
     

  • Schilling, C., Koffas, M. A. G., Sieber, V. & Schmid, J. Novel prokaryotic CRISPR–Cas12a-based instrument for programmable transcriptional activation and repression. ACS Synth. Biol. 9, 3353–3363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Wan, X. & Wang, B. Engineered CRISPRa allows programmable eukaryote-like gene activation in micro organism. Nat. Commun. 10, 3693 (2019).

    Article 

    Google Scholar
     

  • Dong, C., Fontana, J., Patel, A., Carothers, J. M. & Zalatan, J. G. Artificial CRISPR–Cas gene activators for transcriptional reprogramming in micro organism. Nat. Commun. 9, 2489 (2018).

    Article 

    Google Scholar
     

  • Ho, H.-I., Fang, J. R., Cheung, J. & Wang, H. H. Programmable CRISPR–Cas transcriptional activation in micro organism. Mol. Syst. Biol. 16, e9427 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zalatan, J. G. et al. Engineering advanced artificial transcriptional packages with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Deaner, M., Mejia, J. & Alper, H. S. Enabling graded and large-scale multiplex of desired genes utilizing a dual-mode dCas9 activator in Saccharomyces cerevisiae. ACS Synth. Biol. 6, 1931–1943 (2017).

    Article 

    Google Scholar
     

  • Gaugué, I., Oberto, J. & Plumbridge, J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR household regulators, NagR and GamR. Mol. Microbiol. 92, 100–115 (2014).

    Article 

    Google Scholar
     

  • Bowman, E. Okay. & Alper, H. S. Microdroplet-assisted screening of biomolecule manufacturing for metabolic engineering functions. Developments Biotechnol. 38, 701–714 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rahmer, R., Heravi, Okay. M. & Altenbuchner, J. Building of a super-competent Bacillus subtilis 168 utilizing the PmtlAcomKS inducible cassette. Entrance. Microbiol. 6, 1431 (2015).

    Article 

    Google Scholar
     

  • Niu, T. et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme change allows dynamic management of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine. ACS Synth. Biol. 7, 2423–2435 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. & Naismith, J. H. An environment friendly one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008).

    Article 

    Google Scholar
     

  • Altenbuchner, J. Enhancing of the Bacillus subtilis genome by the CRISPR–Cas9 system. Appl. Environ. Microbiol. 82, 5421–5427 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Okay., Akiyama, M. & Sakakibara, Y. RNA secondary construction prediction utilizing deep studying with thermodynamic integration. Nat. Commun. 12, 941 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 extremely optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source_link

    Leave a Reply

    Your email address will not be published. Required fields are marked *