Optimization of spring parameters by utilizing the Bees algorithm for the foldable wing mechanism
[ad_1]
Min, Z., Kien, V. Ok. & Richard, L. J. Plane morphing wing ideas with radical geometry change. IES J. Half A Civ. Struct. Eng. 3(3), 188–195 (2010).
Solar, J., Liu, C. & Bhushan, B. A evaluate of beetle hindwings: Construction, mechanical properties, mechanism and bioinspiration. J. Mech. Behav. Biomed. Mater. 94, 63–73 (2019).
Chen, Z., Yu, J., Zhang, A. & Zhang, F. Design and evaluation of folding propulsion mechanism for hybrid-driven underwater gliders. Ocean Eng. 119, 125–134 (2016).
Karthik, H. S. & Prithvi, C. Design and evaluation of folding mechanism for a horizontal stabilizer in a helicopter. Int. J. Eng. Res. Technol. (IJERT) 9(05), 110–113 (2020).
Kulunk, Z. & Sahin, M. Optimization of mechanical design parameters for missile foldable wing mechanism by utilizing design of experiment technique. Int. J. Mannequin. Optim. 9(2), 108–112 (2019).
Ke, J., Wu, Z. Y., Liu, Y. S., Xiang, Z. & Hu, X. D. Design technique, efficiency investigation and manufacturing strategy of composite helical springs: A evaluate. Compos. Struct. 252, 112747 (2020).
Taktak, M., Omheni, Ok., Aloui, A., Dammak, F. & Haddar, M. Dynamic optimization design of a cylindrical helical spring. Appl. Acoust. 77, 178–183 (2014).
Paredes, M., Sartor, M. & Masclet, C. An optimization course of for extension spring design. Comput. Strategies Appl. Mech. Eng. 191(8–10), 783–797 (2001).
Zebdi, O., Boukhili, R. & Trochu, F. Optimum design of a composite helical spring by multi-criteria optimization. J. Reinf. Plast. Compos. 28(14), 1713–1732 (2009).
Pawar, H. B. & Desale, D. D. Optimization of three wheeler entrance suspension coil spring. Proc. Manuf. 20, 428–433 (2018).
Bakhshesh, M. & Bakhshesh, M. Optimization of metal helical spring by composite spring. Int. J. Multidiscip. Sci. Eng. 3(6), 47–51 (2012).
Chen, L. et al. Understanding a number of parameters affecting static and dynamic performances of composite helical springs. J. Market. Res. 20, 532–550 (2022).
Frank, J. Evaluation and optimization of composite helical springs, Doctoral dissertation, Sacramento State (2020).
Gu, Z., Hou, X. & Ye, J. Design and evaluation technique of nonlinear helical springs utilizing a combining approach: Finite component evaluation, constrained Latin hypercube sampling and genetic programming. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(22), 5917–5930 (2021).
Wu, L. et al. Carbon fiber composite multistrand helical springs with adjustable spring fixed: design and mechanism research. J. Market. Res. 9(3), 5067–5076 (2020).
Patil, D. S., Mangrulkar, Ok. S. & Jagtap, S. T. Weight optimization of helical compression spring. Int. J. Innov. Res. Multidiscip. 2(11), 154–164 (2016).
Rahul, M. S. & Rameshkumar, Ok. Multi-objective optimization and numerical modelling of helical coil spring for automotive utility. Mater. Right now Proc. 46, 4847–4853 (2021).
Bai, J. B. et al. Figuring out the most effective follow–Optimum designs of composite helical constructions utilizing Genetic Algorithms. Compos. Struct. 268, 113982 (2021).
Şahin, İ, Dörterler, M. & Gökçe, H. Optimum design of compression spring based on minimal quantity utilizing gray wolf optimization technique. Gazi J. Eng. Sci. 3(2), 21–27 (2017).
Aye, C. M., Pholdee, N., Yildiz, A. R., Bureerat, S. & Sait, S. M. Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int. J. Veh. Des. 80(2–4), 223–240 (2019).
Yıldız, A. R. & Erdaş, M. U. A brand new Hybrid Taguchi-salp swarm optimization algorithm for the strong design of real-world engineering issues. Mater. Check. 63(2), 157–162 (2021).
Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R. & Sait, S. M. Strong design of a robotic gripper mechanism utilizing new hybrid grasshopper optimization algorithm. Skilled. Syst. 38(3), e12666 (2021).
Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. Enhanced grasshopper optimization algorithm utilizing elite opposition-based studying for fixing real-world engineering issues. Eng. Comput. 1–13 (2021).
Yıldız, B. S., Pholdee, N., Panagant, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. A novel chaotic Henry fuel solubility optimization algorithm for fixing real-world engineering issues. Eng. Comput. 1–13 (2021).
Zarchi, M. & Attaran, B. Efficiency enchancment of an energetic vibration absorber subsystem for an plane mannequin utilizing a Bees algorithm primarily based on multi-objective clever optimization. Eng. Optim. 49(11), 1905–1921 (2017).
Shigley, J. E., Mischke, C. R., Budynes, R. G. Mechanical Engineering Design. McGRAW-HILL Collection in Mechanical Engineering, Ninth Version, New York, NY 542–549 (2011).
Pham, D. T., Baronti, L., Zhang, B. & Castellani, M. Optimisation of engineering techniques with the bees algorithm. Int. J. Artif. Life Res. (IJALR) 8(1), 1–15 (2018).
Sahin, M. Fixing TSP by utilizing combinatorial Bees algorithm with nearest neighbor technique. Neural Comput. Appl. 1–17 (2022).
Baronti, L., Castellani, M. & Pham, D. T. An evaluation of the search mechanisms of the bees algorithm”. Swarm Evol. Comput. 59, 100746 (2020).
Pham, D. T. & Castellani, M. Benchmarking and comparability of nature-inspired population-based steady optimisation algorithms. Smooth Comput. 18, 871–903 (2014).
[ad_2]
Source_link