Optimization of spring parameters by utilizing the Bees algorithm for the foldable wing mechanism

[ad_1]

  • Min, Z., Kien, V. Ok. & Richard, L. J. Plane morphing wing ideas with radical geometry change. IES J. Half A Civ. Struct. Eng. 3(3), 188–195 (2010).

    Article 

    Google Scholar
     

  • Solar, J., Liu, C. & Bhushan, B. A evaluate of beetle hindwings: Construction, mechanical properties, mechanism and bioinspiration. J. Mech. Behav. Biomed. Mater. 94, 63–73 (2019).

    Article 

    Google Scholar
     

  • Chen, Z., Yu, J., Zhang, A. & Zhang, F. Design and evaluation of folding propulsion mechanism for hybrid-driven underwater gliders. Ocean Eng. 119, 125–134 (2016).

    Article 

    Google Scholar
     

  • Karthik, H. S. & Prithvi, C. Design and evaluation of folding mechanism for a horizontal stabilizer in a helicopter. Int. J. Eng. Res. Technol. (IJERT) 9(05), 110–113 (2020).


    Google Scholar
     

  • Kulunk, Z. & Sahin, M. Optimization of mechanical design parameters for missile foldable wing mechanism by utilizing design of experiment technique. Int. J. Mannequin. Optim. 9(2), 108–112 (2019).

    Article 

    Google Scholar
     

  • Ke, J., Wu, Z. Y., Liu, Y. S., Xiang, Z. & Hu, X. D. Design technique, efficiency investigation and manufacturing strategy of composite helical springs: A evaluate. Compos. Struct. 252, 112747 (2020).

    Article 

    Google Scholar
     

  • Taktak, M., Omheni, Ok., Aloui, A., Dammak, F. & Haddar, M. Dynamic optimization design of a cylindrical helical spring. Appl. Acoust. 77, 178–183 (2014).

    Article 

    Google Scholar
     

  • Paredes, M., Sartor, M. & Masclet, C. An optimization course of for extension spring design. Comput. Strategies Appl. Mech. Eng. 191(8–10), 783–797 (2001).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zebdi, O., Boukhili, R. & Trochu, F. Optimum design of a composite helical spring by multi-criteria optimization. J. Reinf. Plast. Compos. 28(14), 1713–1732 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pawar, H. B. & Desale, D. D. Optimization of three wheeler entrance suspension coil spring. Proc. Manuf. 20, 428–433 (2018).


    Google Scholar
     

  • Bakhshesh, M. & Bakhshesh, M. Optimization of metal helical spring by composite spring. Int. J. Multidiscip. Sci. Eng. 3(6), 47–51 (2012).


    Google Scholar
     

  • Chen, L. et al. Understanding a number of parameters affecting static and dynamic performances of composite helical springs. J. Market. Res. 20, 532–550 (2022).


    Google Scholar
     

  • Frank, J. Evaluation and optimization of composite helical springs, Doctoral dissertation, Sacramento State (2020).

  • Gu, Z., Hou, X. & Ye, J. Design and evaluation technique of nonlinear helical springs utilizing a combining approach: Finite component evaluation, constrained Latin hypercube sampling and genetic programming. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(22), 5917–5930 (2021).

    Article 

    Google Scholar
     

  • Wu, L. et al. Carbon fiber composite multistrand helical springs with adjustable spring fixed: design and mechanism research. J. Market. Res. 9(3), 5067–5076 (2020).

    CAS 

    Google Scholar
     

  • Patil, D. S., Mangrulkar, Ok. S. & Jagtap, S. T. Weight optimization of helical compression spring. Int. J. Innov. Res. Multidiscip. 2(11), 154–164 (2016).


    Google Scholar
     

  • Rahul, M. S. & Rameshkumar, Ok. Multi-objective optimization and numerical modelling of helical coil spring for automotive utility. Mater. Right now Proc. 46, 4847–4853 (2021).

    Article 

    Google Scholar
     

  • Bai, J. B. et al. Figuring out the most effective follow–Optimum designs of composite helical constructions utilizing Genetic Algorithms. Compos. Struct. 268, 113982 (2021).

    Article 

    Google Scholar
     

  • Şahin, İ, Dörterler, M. & Gökçe, H. Optimum design of compression spring based on minimal quantity utilizing gray wolf optimization technique. Gazi J. Eng. Sci. 3(2), 21–27 (2017).


    Google Scholar
     

  • Aye, C. M., Pholdee, N., Yildiz, A. R., Bureerat, S. & Sait, S. M. Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int. J. Veh. Des. 80(2–4), 223–240 (2019).

    Article 

    Google Scholar
     

  • Yıldız, A. R. & Erdaş, M. U. A brand new Hybrid Taguchi-salp swarm optimization algorithm for the strong design of real-world engineering issues. Mater. Check. 63(2), 157–162 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R. & Sait, S. M. Strong design of a robotic gripper mechanism utilizing new hybrid grasshopper optimization algorithm. Skilled. Syst. 38(3), e12666 (2021).

    Article 

    Google Scholar
     

  • Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. Enhanced grasshopper optimization algorithm utilizing elite opposition-based studying for fixing real-world engineering issues. Eng. Comput. 1–13 (2021).

  • Yıldız, B. S., Pholdee, N., Panagant, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. A novel chaotic Henry fuel solubility optimization algorithm for fixing real-world engineering issues. Eng. Comput. 1–13 (2021).

  • Zarchi, M. & Attaran, B. Efficiency enchancment of an energetic vibration absorber subsystem for an plane mannequin utilizing a Bees algorithm primarily based on multi-objective clever optimization. Eng. Optim. 49(11), 1905–1921 (2017).

    Article 

    Google Scholar
     

  • Shigley, J. E., Mischke, C. R., Budynes, R. G. Mechanical Engineering Design. McGRAW-HILL Collection in Mechanical Engineering, Ninth Version, New York, NY 542–549 (2011).

  • Pham, D. T., Baronti, L., Zhang, B. & Castellani, M. Optimisation of engineering techniques with the bees algorithm. Int. J. Artif. Life Res. (IJALR) 8(1), 1–15 (2018).

    Article 

    Google Scholar
     

  • Sahin, M. Fixing TSP by utilizing combinatorial Bees algorithm with nearest neighbor technique. Neural Comput. Appl. 1–17 (2022).

  • Baronti, L., Castellani, M. & Pham, D. T. An evaluation of the search mechanisms of the bees algorithm”. Swarm Evol. Comput. 59, 100746 (2020).

    Article 

    Google Scholar
     

  • Pham, D. T. & Castellani, M. Benchmarking and comparability of nature-inspired population-based steady optimisation algorithms. Smooth Comput. 18, 871–903 (2014).

    Article 

    Google Scholar
     

  • [ad_2]

    Source_link

    Leave a Reply

    Your email address will not be published. Required fields are marked *