Optimization of magnetic nano-iron manufacturing by Aspergillus flavipes MN956655.1 utilizing response floor methodology and analysis of their dye decolorizing and antifungal actions

[ad_1]

  • Ameen, F., Alsamhary, Ok., Alabdullatif, J. A. & Al Nadhari, S. A evaluation on metal-based nanoparticles and their toxicity to helpful soil micro organism and fungi. Ecotoxicol. Environ. Saf. 213, 112027 (2021).

    Article 

    Google Scholar
     

  • Qamar, S.U.-R. & Ahmad, J. N. Nanoparticles: Mechanism of biosynthesis utilizing plant extracts, micro organism, fungi, and their purposes. J. Mol. Liq. 334, 116040 (2021).

    Article 

    Google Scholar
     

  • Fahmy, H. M. et al. Evaluation of Inexperienced Strategies of Iron Nanoparticles Synthesis and Purposes. BioNanoSci. 8, 491–503 (2018).

    Article 

    Google Scholar
     

  • Sadhasivam, S., Vinayagam, V. & Balasubramaniyan, M. Latest development in biogenic synthesis of iron nanoparticles. J. Mol. Struct. 1217, 128372 (2020).

    Article 

    Google Scholar
     

  • Pattanayak, D. S., Pal, D., Thakur, C., Kumar, S. & Devnani, G. L. Bio-synthesis of iron nanoparticles for environmental remediation: Standing until date. Mater. Right now 44, 3150–3155 (2021).


    Google Scholar
     

  • Mahanty, S. et al. Inexperienced synthesis of iron oxide nanoparticles mediated by filamentous fungi remoted from Sundarban Mangrove Ecosystem, India. BioNanoScience 9, 637–651 (2019).

    Article 

    Google Scholar
     

  • Mahanty, S. et al. Mycosynthesis of iron oxide nanoparticles utilizing manglicolous fungi remoted from Indian sundarbans and its utility for the therapy of chromium containing resolution: Synthesis, adsorption isotherm, kinetics and thermodynamics examine. Environ. Nanotechnol. Monit. Manag. 12, 100276 (2019).


    Google Scholar
     

  • Anderson, M. J. & Whitcomb, P. J. Screening Course of Elements within the Presence of Interactions. Stat-Ease, Inc. (https://www.statease.com/pubs/aqc2004.pdf) (2004).

  • Gorbounov, M., Taylor, J., Petrovic, B. & Soltani, S. M. To DoE or to not DoE? A technical evaluation on & roadmap for optimisation of carbonaceous adsorbents and adsorption processes. S. Afr. J. Chem. Eng. 41, 111–128 (2022).


    Google Scholar
     

  • Madondo, N. I. & Chetty, M. Anaerobic co-digestion of sewage sludge and bio-based glycerol: Optimisation of course of variables utilizing one-factor-at-a-time (OFAT) and Field-Behnken Design (BBD) methods. S. Afr. J. Chem. Eng. 40, 87–99 (2022).


    Google Scholar
     

  • Luiz, M. T. et al. Design of experiments (DoE) to develop and to optimize nanoparticles as drug supply methods. Eur. J. Pharm. Biopharm. 165, 127–148 (2021).

    Article 

    Google Scholar
     

  • Rakić, T., Jančić-Stojanović, B., Malenović, A., Ivanović, D. & Medenica, M. Demasking giant dummy results method in revealing necessary interactions in Plackett-Burman experimental design. J. Chemom. 26, 518–525 (2012).

    Article 

    Google Scholar
     

  • Waksman, S. A. A way for counting the variety of fungi within the soil. J. Bacteriol. 7, 339–341 (1922).

    Article 

    Google Scholar
     

  • Kumar, P. Ok. R., Hemanth, G., Niharika, P. S. & Kolli, S. Ok. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. Int. J. Adv. Pharm. Biol. Chem. 4, 484–490 (2015).


    Google Scholar
     

  • Doyle, J. J. & Doyle, J. L. A fast DNA isolation process for small portions of recent leaf tissue. Phytochem. Bull. 19, 11–15 (1987).


    Google Scholar
     

  • Cullings, Ok. W. Design and testing of a plant-specific PCR primer for ecological and evolutionary research. Mol. Ecol. 1, 233–240 (1992).

    Article 

    Google Scholar
     

  • Wickerham, L.J. Taxonomy of Yeasts. Technical Bulletin U.S. Division of Agriculture no.1029 (1951).

  • Jose, P. A., Sivakala, Ok. Ok. & Jebakumar, S. R. D. Formulation and statistical optimization of tradition medium for improved manufacturing of antimicrobial compound by Streptomyces sp. JAJ06. Int. J. Microbiol. 2013, 526260 (2013).


    Google Scholar
     

  • Mathur, P., Saini, S., Paul, E., Sharma, C. & Mehtani, P. Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and utility in methylene blue decolorization. Curr. Res. Inexperienced Maintain. Chem. 4, 100053 (2021).

    Article 

    Google Scholar
     

  • Xiao, C., Li, H., Zhao, Y., Zhang, X. & Wang, X. Inexperienced synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removing of cationic dyes. J. Environ. Handle. 275, 111262 (2020).

    Article 

    Google Scholar
     

  • Imtiaj, A., Jayasinghe, C., Lee, G. W. & Lee, T. S. Antibacterial and Antifungal Actions of Stereum ostrea ‘an Inedible Wild Mushroom’. Mycobiology 35, 210–214 (2007).

    Article 

    Google Scholar
     

  • Boonsang, N., Dethoup, T., Singburaudom, N., Gomes, N. G. M. & Kijjoa, A. In vitro antifungal exercise screening of crude extracts of soil fungi towards plant pathogenic fungi. J. Biopest. 7, 156–166 (2014).


    Google Scholar
     

  • Raper, Ok. P. & Fennell, D. I. The Genus Aspergillus 36 (Williams and Wilkins, 1965).


    Google Scholar
     

  • Kebeish, R. M. & El-Sayed, A. S. Morphological and molecular characterization of L-methioninase producing Aspergillus species. Afr. J. Biotech. 11(87), 15280–15290 (2012).


    Google Scholar
     

  • Raper, Ok. B. & Fennel, D. I. The Genus Aspergillus 558–561 (Williams and Wilkins, 1965).


    Google Scholar
     

  • Muntanjola-Cvetkovic, M. & Vukic, V. V. Affect of sunshine on hülle cell and aleuriospore formation in Aspergillus. Trans. Br. Mycol. Soc. 58(1), 67–72 (1972).

    Article 

    Google Scholar
     

  • Sklenář, F. et al. Re-examination of species limits in Aspergillus part Flavipedes utilizing superior species delimitation strategies and outline of 4 new species. Stud. Mycol. 99, 100120 (2021).

    Article 

    Google Scholar
     

  • Abdel-Azeem, A. M. et al. The Egyptian Ascomycota 1: Genus Aspergillus. Microb. Biosyst. 5(1), 61–99. https://doi.org/10.21608/MB.2020.100044 (2020).

    Article 

    Google Scholar
     

  • Visagie, C. M. et al. Aspergillus, Penicillium and Talaromyces remoted from home mud samples collected all over the world. Stud. Mycol. 78, 63–139 (2014).

    Article 

    Google Scholar
     

  • Arzanlou, M., Samadi, R., Frisvad, J. C., Houbraken, J. & Ghosta, Y. Two novel Aspergillus species from hypersaline soils of the Nationwide Park of Lake Urmia, Iran. Mycol. Progr. https://doi.org/10.1007/s11557-016-1230-8 (2016).

    Article 

    Google Scholar
     

  • Bettencourt, G.M.-D.-F., Degenhardt, J., Torres, L. A. Z., Tanobe, V.O.D.-A. & Soccol, C. R. Inexperienced biosynthesis of single and bimetallic nanoparticles of iron and manganese utilizing bacterial auxin advanced to behave as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 30, 101822 (2020).

    Article 

    Google Scholar
     

  • Fatemi, M., Mollania, N., Momeni-Moghaddam, M. & Sadeghifar, F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus pressure HMH1: Characterization and in vitro cytotoxicity evaluation on MCF-7 and 3T3 cell strains. J. Biotechnol. 270, 1–11 (2018).

    Article 

    Google Scholar
     

  • Mehboob, N. Hysteresis Properties of Mushy Magnetic Supplies (2012). Dissertation for Physician of Science tutorial diploma. 091 411 (2018).

  • Kheshtzar, R. et al. Response floor methodology and response optimization to product zero-valent iron nanoparticles for natural pollutant remediation. Biocatal. Agric. Biotechnol. 21, 101329 (2019).

    Article 

    Google Scholar
     

  • Singh, Ok. Ok., Senapati, Ok. Ok. & Sarma, Ok. C. Synthesis of superparamagnetic Fe3O4 nanoparticles coated with inexperienced tea polyphenols and their use for removing of dye pollutant from aqueous resolution. J. Environ. Chem. Eng. 5, 2214–2221 (2017).

    Article 

    Google Scholar
     

  • Khan, M. Y. et al. Inexperienced chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J. Anal. Appl. Pyrol. 116, 42–48 (2015).

    Article 

    Google Scholar
     

  • Coates, J. Interpretation of infrared spectra: A sensible method. In Encyclopedia of Analytical Chemistry (ed. Meyers, R. A.) 10815–10837 (Wiley, 2000).


    Google Scholar
     

  • Nandiyanto, A. B. D., Oktiani, R. & Ragadhita, R. learn and interpret FTIR spectroscope of natural materials. Indonesian J. Sci. Technol. 4, 97–118 (2019).

    Article 

    Google Scholar
     

  • Periakaruppan, R. et al. Utilization of tea sources with the manufacturing of superparamagnetic biogenic iron oxide nanoparticles and an evaluation of their antioxidant actions. J. Clear. Prod. 278, 123962 (2021).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Inexperienced synthesis of magnetite nanoparticle and its regulatory impact on fermentative hydrogen manufacturing from lignocellulosic hydrolysate by Klebsiella sp. Int. J. Hydrog. Vitality 46, 20413–20424 (2021).

    Article 

    Google Scholar
     

  • Baadhe, R. R., Mekala, N. Ok., Parcha, S. R. & Devi, Y. P. Optimization of amorphadiene manufacturing in engineered yeast by response floor methodology. 3 Biotech 4, 317–324 (2014).

    Article 

    Google Scholar
     

  • Bai, Y., Saren, G. & Huo, W. Response floor methodology (RSM) in analysis of the vitamin C concentrations in microwave handled milk. J. Meals Sci. Technol. 52, 4647–4651 (2015).

    Article 

    Google Scholar
     

  • Singh, Ok., Chopra, D. S., Singh, D. & Singh, N. Optimization and ecofriendly synthesis of iron oxide nanoparticles as potential antioxidant. Arab. J. Chem. 13, 9034–9046 (2020).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. Seed-Mediated synthesis of gold tetrahedra in excessive purity and with tunable well-controlled sizes. Chem. Asian J. 9, 2635–2640 (2014).

    Article 

    Google Scholar
     

  • Salem, D. M. S. A., Ismail, M. M. & Aly-Eldeen, M. A. Biogenic synthesis and antimicrobial efficiency of iron oxide (Fe3O4) nanoparticles utilizing algae harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res. 45, 197–204 (2019).

    Article 

    Google Scholar
     

  • Puthukkara, P. A. R., Sunil Jose, T. & Dinooplal, S. Plant mediated synthesis of zero valent iron nanoparticles and its utility in water therapy. J. Environ. Chem. Eng. 9, 104569 (2021).

    Article 

    Google Scholar
     

  • Vinothkannan, M., Karthikeyan, C., Kumar, G. G., Kim, A. R. & Yoo, D. J. One-pot inexperienced synthesis of decreased graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic exercise towards methylene blue dye degradation. Spectrochim. Acta Half A Mol. Biomol. Spectrosc. 136, 256–264 (2015).

    Article 

    Google Scholar
     

  • Keskin, N. O. S., Kılıç, N. Ok., Dönmez, G. & Tekinay, T. Inexperienced synthesis of silver nanoparticles utilizing cyanobacteria and analysis of their photocatalytic and antimicrobial exercise. J. Nano Res. 40, 120–127 (2016).

    Article 

    Google Scholar
     

  • Ali, M., Haroon, U., Khizar, M., Chaudhary, H. J. & Munis, M. F. H. Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to guage their antifungal potential towards Alternaria alternata. Curr. Plant Biol. 23, 100157 (2020).

    Article 

    Google Scholar
     

  • Parveen, S. et al. Preparation, characterization and antifungal exercise of iron oxide nanoparticles. Microb. Pathog. 115, 287–292 (2018).

    Article 

    Google Scholar
     

  • [ad_2]

    Source_link

    Leave a Reply

    Your email address will not be published. Required fields are marked *