Optimization of magnetic nano-iron manufacturing by Aspergillus flavipes MN956655.1 utilizing response floor methodology and analysis of their dye decolorizing and antifungal actions
[ad_1]
Ameen, F., Alsamhary, Ok., Alabdullatif, J. A. & Al Nadhari, S. A evaluation on metal-based nanoparticles and their toxicity to helpful soil micro organism and fungi. Ecotoxicol. Environ. Saf. 213, 112027 (2021).
Qamar, S.U.-R. & Ahmad, J. N. Nanoparticles: Mechanism of biosynthesis utilizing plant extracts, micro organism, fungi, and their purposes. J. Mol. Liq. 334, 116040 (2021).
Fahmy, H. M. et al. Evaluation of Inexperienced Strategies of Iron Nanoparticles Synthesis and Purposes. BioNanoSci. 8, 491–503 (2018).
Sadhasivam, S., Vinayagam, V. & Balasubramaniyan, M. Latest development in biogenic synthesis of iron nanoparticles. J. Mol. Struct. 1217, 128372 (2020).
Pattanayak, D. S., Pal, D., Thakur, C., Kumar, S. & Devnani, G. L. Bio-synthesis of iron nanoparticles for environmental remediation: Standing until date. Mater. Right now 44, 3150–3155 (2021).
Mahanty, S. et al. Inexperienced synthesis of iron oxide nanoparticles mediated by filamentous fungi remoted from Sundarban Mangrove Ecosystem, India. BioNanoScience 9, 637–651 (2019).
Mahanty, S. et al. Mycosynthesis of iron oxide nanoparticles utilizing manglicolous fungi remoted from Indian sundarbans and its utility for the therapy of chromium containing resolution: Synthesis, adsorption isotherm, kinetics and thermodynamics examine. Environ. Nanotechnol. Monit. Manag. 12, 100276 (2019).
Anderson, M. J. & Whitcomb, P. J. Screening Course of Elements within the Presence of Interactions. Stat-Ease, Inc. (https://www.statease.com/pubs/aqc2004.pdf) (2004).
Gorbounov, M., Taylor, J., Petrovic, B. & Soltani, S. M. To DoE or to not DoE? A technical evaluation on & roadmap for optimisation of carbonaceous adsorbents and adsorption processes. S. Afr. J. Chem. Eng. 41, 111–128 (2022).
Madondo, N. I. & Chetty, M. Anaerobic co-digestion of sewage sludge and bio-based glycerol: Optimisation of course of variables utilizing one-factor-at-a-time (OFAT) and Field-Behnken Design (BBD) methods. S. Afr. J. Chem. Eng. 40, 87–99 (2022).
Luiz, M. T. et al. Design of experiments (DoE) to develop and to optimize nanoparticles as drug supply methods. Eur. J. Pharm. Biopharm. 165, 127–148 (2021).
Rakić, T., Jančić-Stojanović, B., Malenović, A., Ivanović, D. & Medenica, M. Demasking giant dummy results method in revealing necessary interactions in Plackett-Burman experimental design. J. Chemom. 26, 518–525 (2012).
Waksman, S. A. A way for counting the variety of fungi within the soil. J. Bacteriol. 7, 339–341 (1922).
Kumar, P. Ok. R., Hemanth, G., Niharika, P. S. & Kolli, S. Ok. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. Int. J. Adv. Pharm. Biol. Chem. 4, 484–490 (2015).
Doyle, J. J. & Doyle, J. L. A fast DNA isolation process for small portions of recent leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
Cullings, Ok. W. Design and testing of a plant-specific PCR primer for ecological and evolutionary research. Mol. Ecol. 1, 233–240 (1992).
Wickerham, L.J. Taxonomy of Yeasts. Technical Bulletin U.S. Division of Agriculture no.1029 (1951).
Jose, P. A., Sivakala, Ok. Ok. & Jebakumar, S. R. D. Formulation and statistical optimization of tradition medium for improved manufacturing of antimicrobial compound by Streptomyces sp. JAJ06. Int. J. Microbiol. 2013, 526260 (2013).
Mathur, P., Saini, S., Paul, E., Sharma, C. & Mehtani, P. Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and utility in methylene blue decolorization. Curr. Res. Inexperienced Maintain. Chem. 4, 100053 (2021).
Xiao, C., Li, H., Zhao, Y., Zhang, X. & Wang, X. Inexperienced synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removing of cationic dyes. J. Environ. Handle. 275, 111262 (2020).
Imtiaj, A., Jayasinghe, C., Lee, G. W. & Lee, T. S. Antibacterial and Antifungal Actions of Stereum ostrea ‘an Inedible Wild Mushroom’. Mycobiology 35, 210–214 (2007).
Boonsang, N., Dethoup, T., Singburaudom, N., Gomes, N. G. M. & Kijjoa, A. In vitro antifungal exercise screening of crude extracts of soil fungi towards plant pathogenic fungi. J. Biopest. 7, 156–166 (2014).
Raper, Ok. P. & Fennell, D. I. The Genus Aspergillus 36 (Williams and Wilkins, 1965).
Kebeish, R. M. & El-Sayed, A. S. Morphological and molecular characterization of L-methioninase producing Aspergillus species. Afr. J. Biotech. 11(87), 15280–15290 (2012).
Raper, Ok. B. & Fennel, D. I. The Genus Aspergillus 558–561 (Williams and Wilkins, 1965).
Muntanjola-Cvetkovic, M. & Vukic, V. V. Affect of sunshine on hülle cell and aleuriospore formation in Aspergillus. Trans. Br. Mycol. Soc. 58(1), 67–72 (1972).
Sklenář, F. et al. Re-examination of species limits in Aspergillus part Flavipedes utilizing superior species delimitation strategies and outline of 4 new species. Stud. Mycol. 99, 100120 (2021).
Abdel-Azeem, A. M. et al. The Egyptian Ascomycota 1: Genus Aspergillus. Microb. Biosyst. 5(1), 61–99. https://doi.org/10.21608/MB.2020.100044 (2020).
Visagie, C. M. et al. Aspergillus, Penicillium and Talaromyces remoted from home mud samples collected all over the world. Stud. Mycol. 78, 63–139 (2014).
Arzanlou, M., Samadi, R., Frisvad, J. C., Houbraken, J. & Ghosta, Y. Two novel Aspergillus species from hypersaline soils of the Nationwide Park of Lake Urmia, Iran. Mycol. Progr. https://doi.org/10.1007/s11557-016-1230-8 (2016).
Bettencourt, G.M.-D.-F., Degenhardt, J., Torres, L. A. Z., Tanobe, V.O.D.-A. & Soccol, C. R. Inexperienced biosynthesis of single and bimetallic nanoparticles of iron and manganese utilizing bacterial auxin advanced to behave as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 30, 101822 (2020).
Fatemi, M., Mollania, N., Momeni-Moghaddam, M. & Sadeghifar, F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus pressure HMH1: Characterization and in vitro cytotoxicity evaluation on MCF-7 and 3T3 cell strains. J. Biotechnol. 270, 1–11 (2018).
Mehboob, N. Hysteresis Properties of Mushy Magnetic Supplies (2012). Dissertation for Physician of Science tutorial diploma. 091 411 (2018).
Kheshtzar, R. et al. Response floor methodology and response optimization to product zero-valent iron nanoparticles for natural pollutant remediation. Biocatal. Agric. Biotechnol. 21, 101329 (2019).
Singh, Ok. Ok., Senapati, Ok. Ok. & Sarma, Ok. C. Synthesis of superparamagnetic Fe3O4 nanoparticles coated with inexperienced tea polyphenols and their use for removing of dye pollutant from aqueous resolution. J. Environ. Chem. Eng. 5, 2214–2221 (2017).
Khan, M. Y. et al. Inexperienced chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J. Anal. Appl. Pyrol. 116, 42–48 (2015).
Coates, J. Interpretation of infrared spectra: A sensible method. In Encyclopedia of Analytical Chemistry (ed. Meyers, R. A.) 10815–10837 (Wiley, 2000).
Nandiyanto, A. B. D., Oktiani, R. & Ragadhita, R. learn and interpret FTIR spectroscope of natural materials. Indonesian J. Sci. Technol. 4, 97–118 (2019).
Periakaruppan, R. et al. Utilization of tea sources with the manufacturing of superparamagnetic biogenic iron oxide nanoparticles and an evaluation of their antioxidant actions. J. Clear. Prod. 278, 123962 (2021).
Zhang, Q. et al. Inexperienced synthesis of magnetite nanoparticle and its regulatory impact on fermentative hydrogen manufacturing from lignocellulosic hydrolysate by Klebsiella sp. Int. J. Hydrog. Vitality 46, 20413–20424 (2021).
Baadhe, R. R., Mekala, N. Ok., Parcha, S. R. & Devi, Y. P. Optimization of amorphadiene manufacturing in engineered yeast by response floor methodology. 3 Biotech 4, 317–324 (2014).
Bai, Y., Saren, G. & Huo, W. Response floor methodology (RSM) in analysis of the vitamin C concentrations in microwave handled milk. J. Meals Sci. Technol. 52, 4647–4651 (2015).
Singh, Ok., Chopra, D. S., Singh, D. & Singh, N. Optimization and ecofriendly synthesis of iron oxide nanoparticles as potential antioxidant. Arab. J. Chem. 13, 9034–9046 (2020).
Zheng, Y. et al. Seed-Mediated synthesis of gold tetrahedra in excessive purity and with tunable well-controlled sizes. Chem. Asian J. 9, 2635–2640 (2014).
Salem, D. M. S. A., Ismail, M. M. & Aly-Eldeen, M. A. Biogenic synthesis and antimicrobial efficiency of iron oxide (Fe3O4) nanoparticles utilizing algae harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res. 45, 197–204 (2019).
Puthukkara, P. A. R., Sunil Jose, T. & Dinooplal, S. Plant mediated synthesis of zero valent iron nanoparticles and its utility in water therapy. J. Environ. Chem. Eng. 9, 104569 (2021).
Vinothkannan, M., Karthikeyan, C., Kumar, G. G., Kim, A. R. & Yoo, D. J. One-pot inexperienced synthesis of decreased graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic exercise towards methylene blue dye degradation. Spectrochim. Acta Half A Mol. Biomol. Spectrosc. 136, 256–264 (2015).
Keskin, N. O. S., Kılıç, N. Ok., Dönmez, G. & Tekinay, T. Inexperienced synthesis of silver nanoparticles utilizing cyanobacteria and analysis of their photocatalytic and antimicrobial exercise. J. Nano Res. 40, 120–127 (2016).
Ali, M., Haroon, U., Khizar, M., Chaudhary, H. J. & Munis, M. F. H. Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to guage their antifungal potential towards Alternaria alternata. Curr. Plant Biol. 23, 100157 (2020).
Parveen, S. et al. Preparation, characterization and antifungal exercise of iron oxide nanoparticles. Microb. Pathog. 115, 287–292 (2018).
[ad_2]
Source_link