A structural optimization algorithm with stochastic forces and stresses

[ad_1]

  • Frenkel, D. & Smit, B. Understanding Molecular Simulation: from Algorithms to Purposes (Educational, 2002).

  • Leach, A. Molecular Modelling: Ideas and Purposes 2nd edn (Prentice Corridor, 2001).

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • Jones, R. O. Density practical principle: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Becke, A. D. Perspective: Fifty years of density-functional principle in chemical physics. J. Chem. Phys. 140, 18A301 (2014).

    Article 

    Google Scholar
     

  • Burke, Ok. Perspective on density practical principle. J. Chem. Phys. 136, 150901 (2012).

    Article 

    Google Scholar
     

  • Automotive, R. & Parrinello, M. Unified method for molecular dynamics and density-functional principle. Phys. Rev. Lett. 55, 2471 (1985).

    Article 

    Google Scholar
     

  • Hedin, L. New technique for calculating the one-particle Inexperienced’s operate with software to the electron-gas downside. Phys. Rev. 139, A796 (1965).

    Article 

    Google Scholar
     

  • Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field principle of strongly correlated fermion methods and the restrict of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

    Article 
    MathSciNet 

    Google Scholar
     

  • Foulkes, W. M. C., Mitas, L., Wants, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33 (2001).

    Article 

    Google Scholar
     

  • Zhang, S. & Krakauer, H. Quantum Monte Carlo technique utilizing phase-free random walks with Slater determinants. Phys. Rev. Lett. 90, 136401 (2003).

    Article 

    Google Scholar
     

  • Rillo, G., Morales, M. A., Ceperley, D. M. & Pierleoni, C. Coupled electron–ion Monte Carlo simulation of hydrogen molecular crystals. J. Chem. Phys. 148, 102314 (2018).

    Article 

    Google Scholar
     

  • Tirelli, A., Tenti, G., Nakano, Ok. & Sorella, S. Excessive-pressure hydrogen by machine studying and quantum Monte Carlo. Phys. Rev. B 106, L041105 (2022).

    Article 

    Google Scholar
     

  • Levine, I. N. Quantum Chemistry (Prentice Corridor, 1991).

  • Cramer, C. J. Necessities of Computational Chemistry (Wiley, 2002).

  • Suewattana, M., Purwanto, W., Zhang, S., Krakauer, H. & Walter, E. J. Phaseless auxiliary-field quantum Monte Carlo calculations with aircraft waves and pseudopotentials: purposes to atoms and molecules. Phys. Rev. B 75, 245123 (2007).

    Article 

    Google Scholar
     

  • Jia, Z.-A. et al. Quantum neural community states: a short evaluation of strategies and purposes. Adv. Quantum Technol. 2, 1800077 (2019).

    Article 

    Google Scholar
     

  • Carleo, G. & Troyer, M. Fixing the quantum many-body downside with synthetic neural networks. Science 355, 602 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lanyon, B. P. et al. In direction of quantum chemistry on a quantum pc. Nat. Chem. 2, 106–111 (2010).

    Article 

    Google Scholar
     

  • Huggins, W. J. et al. Unbiasing fermionic quantum Monte Carlo with a quantum pc. Nature 603, 416–420 (2022).

    Article 

    Google Scholar
     

  • Guareschi, R. & Filippi, C. Floor- and excited-state geometry optimization of small natural molecules with quantum Monte Carlo. J. Chem. Principle Comput. 9, 5513–5525 (2013).

    Article 

    Google Scholar
     

  • Zen, A., Zhelyazov, D. & Guidoni, L. Optimized construction and vibrational properties by error affected potential power surfaces. J. Chem. Principle Comput. 8, 4204–4215 (2012).

    Article 

    Google Scholar
     

  • Barborini, M., Sorella, S. & Guidoni, L. Structural optimization by quantum Monte Carlo: investigating the low-lying excited states of ethylene. J. Chem. Principle Comput. 8, 1260–1269 (2012).

    Article 

    Google Scholar
     

  • Wagner, L. Ok. & Grossman, J. C. Quantum Monte Carlo calculations for minimal power constructions. Phys. Rev. Lett. 104, 210201 (2010).

    Article 

    Google Scholar
     

  • Tiihonen, J., Kent, P. R. C. & Krogel, J. T. Surrogate Hessian accelerated structural optimization for stochastic digital construction theories. J. Chem. Phys. 156, 054104 (2022).

    Article 

    Google Scholar
     

  • Chiesa, S., Ceperley, D. M. & Zhang, S. Correct, environment friendly, and easy forces computed with quantum Monte Carlo strategies. Phys. Rev. Lett. 94, 036404 (2005).

    Article 

    Google Scholar
     

  • Assaraf, R. & Caffarel, M. Zero-variance zero-bias precept for observables in quantum Monte Carlo: software to forces. J. Chem. Phys. 119, 10536 (2003).

    Article 

    Google Scholar
     

  • Robbins, H. & Monro, S. A stochastic approximation technique. Ann. Math. Stat. 22, 400–407 (1951).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Armijo, L. Minimization of features having Lipschitz steady first partial derivatives. Pac. J. Math. 16, 1–3 (1966).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wolfe, P. Convergence circumstances for ascent strategies. SIAM Rev. 11, 226–235 (1969).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wolfe, P. Convergence circumstances for ascent strategies. II: Some corrections. SIAM Rev. 13, 185–188 (1971).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bertsekas, D. P. & Tsitsiklis, J. N. Gradient convergence in gradient strategies with errors. SIAM J. Optim. 10, 627–642 (2000).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bertsekas, D. P., Nonlinear Programming (Athena, 2016).

  • Debye, P. Näherungsformeln für die zylinderfunktionen für große werte des arguments und unbeschränkt veränderliche werte des index. Math. Ann. 67, 535–558 (1909).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hestenes, M. R. & Stiefel, E. Strategies of conjugate gradients for fixing linear methods. J. Res. Natl Bur. Stand. 49, 409–436 (1952).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Shewchuk, J. R. An Introduction to the Conjugate Gradient Technique With out the Agonizing Ache http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (Carnegie Mellon Univ., 1994).

  • Fletcher, R. & Reeves, C. M. Operate minimization by conjugate gradients. Comput. J. 7, 149–154 (1964).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Polak, E. & Ribière, G. Be aware sur la convergence de méthodes de instructions conjuguées. ESAIM Math. Mannequin. Numer. Anal. 3, 35–43 (1969).

    MATH 

    Google Scholar
     

  • Schraudolph N. N. & Graepel, T. Combining conjugate course strategies with stochastic approximation of gradients. Proc. Mach. Studying Res. R4, 248–253 (2003) .

  • Tieleman T. & Hinton, G. Lecture 6a: Neural Networks for Machine Studying (Pc Science, Univ. Toronto, 2012); https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

  • Zeiler, M. D. ADADELTA: an adaptive studying price technique. Preprint at https://doi.org/10.48550/arxiv.1212.5701 (2012).

  • Kingma D. P. & Ba, J. Adam: a technique for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Polyak, B. T. & Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM J. Management Optim. 30, 838–855 (1992).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Polyak, B. New technique of stochastic approximation sort. Autom. Distant Management 51, 937–1008 (1990).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Ruppert, D. Environment friendly Estimations from a Slowly Convergent Robbins–Monro Course of Technical Report (Cornell Univ. Operations Analysis and Industrial Engineering, 1988).

  • Qian, N. On the momentum time period in gradient descent studying algorithms. Neural Netw. 12, 145–151 (1999).

    Article 

    Google Scholar
     

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Studying representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article 
    MATH 

    Google Scholar
     

  • Chen, S. schen24wm/geoopt-srcdata: FSSDxSET supply knowledge v0.1. Zenodo https://doi.org/10.5281/zenodo.7157782 (2022).

  • Chen, S. schen24wm/fssd-set: FSSDxSET v0.1. Zenodo https://doi.org/10.5281/zenodo.7157763 (2022).

  • Chen, M., Yu, T.-Q. & Tuckerman, M. E. Finding landmarks on high-dimensional free power surfaces. Proc. Natl Acad. Sci. USA 112, 3235–3240 (2015).

    Article 

    Google Scholar
     

  • Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article 

    Google Scholar
     

  • Martin, R. M. Digital Construction: Fundamental Principle and Sensible Strategies (Cambridge Univ. Press, 2020).

  • Momma, Ok. & Izumi, F. VESTA: a three-dimensional visualization system for digital and structural evaluation. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article 

    Google Scholar
     

  • [ad_2]

    Source_link

    Leave a Reply

    Your email address will not be published. Required fields are marked *