A structural optimization algorithm with stochastic forces and stresses
[ad_1]
Frenkel, D. & Smit, B. Understanding Molecular Simulation: from Algorithms to Purposes (Educational, 2002).
Leach, A. Molecular Modelling: Ideas and Purposes 2nd edn (Prentice Corridor, 2001).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864 (1964).
Jones, R. O. Density practical principle: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897 (2015).
Becke, A. D. Perspective: Fifty years of density-functional principle in chemical physics. J. Chem. Phys. 140, 18A301 (2014).
Burke, Ok. Perspective on density practical principle. J. Chem. Phys. 136, 150901 (2012).
Automotive, R. & Parrinello, M. Unified method for molecular dynamics and density-functional principle. Phys. Rev. Lett. 55, 2471 (1985).
Hedin, L. New technique for calculating the one-particle Inexperienced’s operate with software to the electron-gas downside. Phys. Rev. 139, A796 (1965).
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field principle of strongly correlated fermion methods and the restrict of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).
Foulkes, W. M. C., Mitas, L., Wants, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33 (2001).
Zhang, S. & Krakauer, H. Quantum Monte Carlo technique utilizing phase-free random walks with Slater determinants. Phys. Rev. Lett. 90, 136401 (2003).
Rillo, G., Morales, M. A., Ceperley, D. M. & Pierleoni, C. Coupled electron–ion Monte Carlo simulation of hydrogen molecular crystals. J. Chem. Phys. 148, 102314 (2018).
Tirelli, A., Tenti, G., Nakano, Ok. & Sorella, S. Excessive-pressure hydrogen by machine studying and quantum Monte Carlo. Phys. Rev. B 106, L041105 (2022).
Levine, I. N. Quantum Chemistry (Prentice Corridor, 1991).
Cramer, C. J. Necessities of Computational Chemistry (Wiley, 2002).
Suewattana, M., Purwanto, W., Zhang, S., Krakauer, H. & Walter, E. J. Phaseless auxiliary-field quantum Monte Carlo calculations with aircraft waves and pseudopotentials: purposes to atoms and molecules. Phys. Rev. B 75, 245123 (2007).
Jia, Z.-A. et al. Quantum neural community states: a short evaluation of strategies and purposes. Adv. Quantum Technol. 2, 1800077 (2019).
Carleo, G. & Troyer, M. Fixing the quantum many-body downside with synthetic neural networks. Science 355, 602 (2017).
Lanyon, B. P. et al. In direction of quantum chemistry on a quantum pc. Nat. Chem. 2, 106–111 (2010).
Huggins, W. J. et al. Unbiasing fermionic quantum Monte Carlo with a quantum pc. Nature 603, 416–420 (2022).
Guareschi, R. & Filippi, C. Floor- and excited-state geometry optimization of small natural molecules with quantum Monte Carlo. J. Chem. Principle Comput. 9, 5513–5525 (2013).
Zen, A., Zhelyazov, D. & Guidoni, L. Optimized construction and vibrational properties by error affected potential power surfaces. J. Chem. Principle Comput. 8, 4204–4215 (2012).
Barborini, M., Sorella, S. & Guidoni, L. Structural optimization by quantum Monte Carlo: investigating the low-lying excited states of ethylene. J. Chem. Principle Comput. 8, 1260–1269 (2012).
Wagner, L. Ok. & Grossman, J. C. Quantum Monte Carlo calculations for minimal power constructions. Phys. Rev. Lett. 104, 210201 (2010).
Tiihonen, J., Kent, P. R. C. & Krogel, J. T. Surrogate Hessian accelerated structural optimization for stochastic digital construction theories. J. Chem. Phys. 156, 054104 (2022).
Chiesa, S., Ceperley, D. M. & Zhang, S. Correct, environment friendly, and easy forces computed with quantum Monte Carlo strategies. Phys. Rev. Lett. 94, 036404 (2005).
Assaraf, R. & Caffarel, M. Zero-variance zero-bias precept for observables in quantum Monte Carlo: software to forces. J. Chem. Phys. 119, 10536 (2003).
Robbins, H. & Monro, S. A stochastic approximation technique. Ann. Math. Stat. 22, 400–407 (1951).
Armijo, L. Minimization of features having Lipschitz steady first partial derivatives. Pac. J. Math. 16, 1–3 (1966).
Wolfe, P. Convergence circumstances for ascent strategies. SIAM Rev. 11, 226–235 (1969).
Wolfe, P. Convergence circumstances for ascent strategies. II: Some corrections. SIAM Rev. 13, 185–188 (1971).
Bertsekas, D. P. & Tsitsiklis, J. N. Gradient convergence in gradient strategies with errors. SIAM J. Optim. 10, 627–642 (2000).
Bertsekas, D. P., Nonlinear Programming (Athena, 2016).
Debye, P. Näherungsformeln für die zylinderfunktionen für große werte des arguments und unbeschränkt veränderliche werte des index. Math. Ann. 67, 535–558 (1909).
Hestenes, M. R. & Stiefel, E. Strategies of conjugate gradients for fixing linear methods. J. Res. Natl Bur. Stand. 49, 409–436 (1952).
Shewchuk, J. R. An Introduction to the Conjugate Gradient Technique With out the Agonizing Ache http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (Carnegie Mellon Univ., 1994).
Fletcher, R. & Reeves, C. M. Operate minimization by conjugate gradients. Comput. J. 7, 149–154 (1964).
Polak, E. & Ribière, G. Be aware sur la convergence de méthodes de instructions conjuguées. ESAIM Math. Mannequin. Numer. Anal. 3, 35–43 (1969).
Schraudolph N. N. & Graepel, T. Combining conjugate course strategies with stochastic approximation of gradients. Proc. Mach. Studying Res. R4, 248–253 (2003) .
Tieleman T. & Hinton, G. Lecture 6a: Neural Networks for Machine Studying (Pc Science, Univ. Toronto, 2012); https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Zeiler, M. D. ADADELTA: an adaptive studying price technique. Preprint at https://doi.org/10.48550/arxiv.1212.5701 (2012).
Kingma D. P. & Ba, J. Adam: a technique for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Polyak, B. T. & Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM J. Management Optim. 30, 838–855 (1992).
Polyak, B. New technique of stochastic approximation sort. Autom. Distant Management 51, 937–1008 (1990).
Ruppert, D. Environment friendly Estimations from a Slowly Convergent Robbins–Monro Course of Technical Report (Cornell Univ. Operations Analysis and Industrial Engineering, 1988).
Qian, N. On the momentum time period in gradient descent studying algorithms. Neural Netw. 12, 145–151 (1999).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Studying representations by back-propagating errors. Nature 323, 533–536 (1986).
Chen, S. schen24wm/geoopt-srcdata: FSSDxSET supply knowledge v0.1. Zenodo https://doi.org/10.5281/zenodo.7157782 (2022).
Chen, S. schen24wm/fssd-set: FSSDxSET v0.1. Zenodo https://doi.org/10.5281/zenodo.7157763 (2022).
Chen, M., Yu, T.-Q. & Tuckerman, M. E. Finding landmarks on high-dimensional free power surfaces. Proc. Natl Acad. Sci. USA 112, 3235–3240 (2015).
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).
Martin, R. M. Digital Construction: Fundamental Principle and Sensible Strategies (Cambridge Univ. Press, 2020).
Momma, Ok. & Izumi, F. VESTA: a three-dimensional visualization system for digital and structural evaluation. J. Appl. Crystallogr. 41, 653–658 (2008).
[ad_2]
Source_link